
Memory-Efficient Regular Expression Search Using
State Merging

Michela Becchi
Department of Computer Science and Engineering

Washington University, St Louis, MO
mbecchi@cse.wustl.edu

Srihari Cadambi
NEC Laboratories America

Princeton NJ
cadambi@nec-labs.com

Abstract— Pattern matching is a crucial task in several critical
network services such as intrusion detection and policy man-
agement. As the complexity of rule-sets increases, traditional
string matching engines are being replaced by more sophisticated
regular expression engines. To keep up with line rates, deal
with denial of service attacks and provide predictable resource
provisioning, the design of such engines must allow examining
payload traffic at several gigabits per second and provide worst
case speed guarantees. While regular expression matching using
deterministic finite automata (DFA) is a well studied problem
in theory, its implementation either in software or specialized
hardware is complicated by prohibitive memory requirements.
This is especially true for DFAs representing complex regular
expressions present in practical rule-sets.

In this paper, we introduce a novel method to drastically
reduce the DFA memory requirement and still provide worst-case
speed guarantees. Specifically, we merge several “non-equivalent”
states in a DFA by introducing labels on their input and output
transitions. We then propose a data structure to represent the
merged states and the transition labels. We show that, with very
few assumptions about the original DFA, such a transformation
results in significant compression in the DFA representation.
We have implemented a state merging and transition labeling
algorithm for DFAs, and show that for Snort and Bro security
rule-sets, state merging results in memory reductions of an order
of magnitude.

I. INTRODUCTION

In addition to examining structured information present
in the header to classify a packet, many critical network
services such as intrusion detection (IDS), policy management
and identification of P2P traffic, require inspection of packet
payloads. Also known as deep packet inspection, this provides
better capability to classify packets based upon applications,
content and state. Until recently, rule-sets for intrusion detec-
tion and other services primarily consisted of strings. However,
current rule-sets like Snort [1], Bro [2], [3] and many others
are replacing strings with the more powerful and expressive
regular expressions.

The classical method to perform regular expression search
is to use a deterministic finite automaton (DFA) [4], the
focus of this paper. The main problem with DFAs is pro-
hibitive memory usage. The number of states in a DFA
scale poorly with the size and number of wildcards in the
regular expressions they represent. As the number of wildcards
in a regular expression grows, the number of DFA states
increases sharply, exponentially in some cases. The presence of

wildcards, one of the primary reasons why regular expressions
are so expressive, also complicates merging multiple regular
expressions. Two regular expressions with a moderate number
of DFA states when considered individually may combine to
form a composite DFA with a much larger state count. Since
rule-sets typically consist of many regular expressions, it is
beneficial to create a combined DFA since checking individual
DFAs one-by-one imposes sequentiality in the processing, and
decreases speed. This memory complexity makes software
regular expression search engines extremely slow and not
scalable to large rule-sets. It also makes hardware architectures
difficult to design and implement.

Compounding this issue is the fact that critical network
services such as intrusion detection must be performed online
at high speeds. For a variety of reasons including router design,
denial-of-service attacks and resource provisioning, routers
must provide a worst-case speed guarantee. In the case of
a DFA, this speed guarantee translates to an upper bound on
the number of states visited for every input character in the
payload traffic. Classical DFAs visit exactly one state per input
character. However, due to memory limitations, many DFA
generators such as Flex [5] build DFAs with fewer states, and
rollback and revisit characters in the input multiple times. Such
a strategy is unacceptable for critical, online network services.

In this paper, we address the memory problem for regular
expression search, specifically for real rule-sets implemented
using DFAs. We argue that by drastically reducing the memory
requirement for DFAs, they become faster, more scalable and
easier to implement in a software engine or as specialized
hardware architectures. We propose a novel technique that
allows non-equivalent states in a DFA to be merged using
a scheme where the transitions in the DFA are labeled. By
carefully labeling transitions, in effect, we are transferring
information from the nodes to the edges of the graph represent-
ing the DFA. We propose a novel data structure to represent
a DFA with merged states and labeled transitions, and show
that this lossless compression method can achieve significant
memory reductions in practice.

Unlike other DFA compaction approaches, we have no re-
quirement on the transitions on which the two states reach their
common destinations. A recent DFA compaction approach [6]
(that does not do state merging, but instead removes transitions
to common destinations) requires two states to not only have

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1064
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

the same destinations, but also transition to those destinations
using the same input characters. Another significant advantage
of our scheme is that merging states creates more common
destinations for other states. As an example, if states A and B
transition to states C and D, they cannot be merged. However,
if C and D were merged, then A and B have a common
destination and could be merged. Thus, merging itself creates
more opportunities for memory compaction.

In summary, the major contribution of our paper is the
notion of merging distinct, non-equivalent states in a DFA
using transition labeling. To this end, we make the following
specific contributions:

• We describe a compact data structure that can represent
a DFA with merged states and transition labels.

• We present a merging and labeling algorithm.
• We extend the bitmap data structure proposed for string

matching [7] to DFAs, and introduce a modification using
pointer indirection, which also reduces memory usage in
its own right.

• We present an analysis of our scheme, and perform a
systematic experimental study comparing state merging
to previous compaction techniques.

The remainder of our paper is organized as follows. In
Section II, we discuss related work. In Section III, we in-
troduce the bitmap-based data structure for DFAs, and present
a discussion of our proposed improvements. We also present a
motivational example that is used throughout the paper. In Sec-
tion IV, we motivate our proposed state merging scheme using
the example. In Section V, we formally present state merging,
and discuss and analyze our merging and labeling algorithm
and the data structure for a merged state. In Section VI, we
present experimental results, and conclude in Section VII.

II. RELATED WORK

Until recently, most intrusion detection and other rule-
sets consisted of strings, not regular expressions. Classi-
cal software-based string matching algorithms include KMP,
Boyer-Moore [8], Wu-Manber [9] and Aho-Corasick [10].
Among these, Aho-Corasick has the ability to handle mul-
tiple patterns and guarantees O(n) search time for an input
consisting of n characters. The memory requirement of the
Aho-Corasick algorithm is generally linear in the total size
of the strings in the rule-set, but a real implementation for
large rule-sets may require considerable storage. In [11], the
authors proposed splitting the state machine so that the string
matching problem is solved by converting the large database
into many smaller state machines, each of which searches for
a portion of the rules, and a portion of the bits of each rule.

In [7], the authors propose two improvements to the Aho-
Corasick algorithm. The first is the use of a bitmap data struc-
ture for each state. The second is to employ path compression
where a “chain” of successive states all with a single outgoing
transition are merged into a single state. As we will see, this
is quite different from our state merging. Instead of “path-
compressing” contiguous single-output states, we merge any

two (or more) states in the DFA. If the states to be merged
have common destinations, memory usage is reduced.

The authors in [12] propose using a TCAM to accelerate
pattern matching. They consider a subset of all possible regular
expressions. Their approach suffers from the drawbacks of
TCAMs such as poor scalability and high power consumption,
and may be unsuitable for large and complex rule-sets. [13]
performed an analysis of regular expressions commonly used
in networking, and proposed rewriting some rules to mitigate
the memory blow-up. The rewriting is performed in a “safe”
manner, which guarantees left-first matches. [13] also an-
alyzes the complexity of DFAs for real regular expressions
used in network-based IDS.

Current algorithms to improve regular expression search
trade-off memory for speed. Perhaps the closest work to our
own in the Delayed DFA (D2FA) presented in [6]. Unlike our
approach, D2FA does not merge states or label transitions.
Rather it identifies two (or more) states that transition to the
same set of destinations on the same input characters. For
example, if both states S0 and S1 transition to state S2
on character a and to state S3 on character b, then the a
and b transitions of state S1 are removed and replaced by
a single “default” transition to state S0. Upon reaching S1,
if the input is a or b, we take the default transition to S0
and then transition to the appropriate destination state. Thus,
D2FA achieves memory compaction by removing duplicated
transitions, but this happens at the expense of latency; states
with a default transition require more than one transition
per input character. There are two major differences between
our scheme and D2FA. First, D2FA requires target states to
have the same destinations as well as the same character to
transition to those destinations. We do not have this restriction,
and can merge states with common destinations, regardless of
the characters on which they transition to those destinations.
In other words, the states that D2FA targets are a subset of the
states that we can merge. Second, in our case, merging states
creates opportunities for more merging. By contrast, D2FA is
a static technique.

In [14], the authors propose increasing the speed of regular
expression search by expanding the alphabet. Specifically, they
process two characters (bytes) for every state transition in
the DFA. This produces an exponential increase in memory
usage (since the cardinality of the alphabet is now squared).
However, they propose several heuristics to mitigate the
memory blow-up. This effort is targeted towards a hardware
implementation, while our algorithm is more general.

III. BITMAP-BASED DATA STRUCTURES FOR DFAS

Using bitmaps is a natural first step towards achieving mem-
ory compaction for DFAs. Bitmaps have been used before for
packet classification [15], [16] as well as for string matching
using Aho-Corasick state machines [7].

In order to illustrate the use of bitmaps, as well as motivate
our scheme, we use a simple example shown in Figure 1. The
same example is used throughout the paper. It represents the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1065
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

0

1

6

3

2

a

f

[b-e]

a

f

[g-h]

k

a

f

k

a

f

a
f

4

a

f

5

[g-i]

j

a

f

0

1

Fig. 1. DFA for regular expression (a[b-e][g-i]|f[g-h]j)k+. All
transitions not shown lead to state 0. The labels (shown within black squares)
appearing on transitions going into states 3 and 4 are discussed in Section IV.

struct DFA_state {
RegExList *accepted_regex;
DFA_state *next_state[256];
DFA_state *failure;

}

Fig. 2. Basic, naive data structure representing a state in a DFA.

regular expression (a[b-e][g-i]|f[g-h]j)k+. Consis-
tent with regular expression syntax, [b-e], [g-i] and
[g-h] indicate ranges of characters, i.e., any character within
the range is permissible. This regular expression accepts all
patterns that either start with an a followed by a single
character from the range [b-e], then by a single character in
the range [g-i], or with an f followed by a g or h followed
by a j, and culminating with one or more k’s. Transitions
leading to the starting state (state 0) are not shown in Figure 1
to avoid clutter.

The basic, naive data structure for representing the DFA is
shown in Figure 2. Each state consists of a structure containing
next state pointers for every character in the alphabet. Thus, for
the ASCII alphabet consisting of 256 characters, this structure
contains 256 next state pointers.

Figure 3(a) demonstrates a method of compacting the basic
data structure using bitmaps [7], [15], [16]. In DFAs repre-
senting practical rule sets, a state seldom has valid outgoing
transitions for all possible characters in the alphabet. Rather,
a few characters transition to valid next states, while several
transition to a default “failure” state. For many states, the
failure state is the start (initial) state. Instead of maintaining
explicit next state pointers, the bitmap-based data structure
maintains pointers to valid next states in a transition table,
and uses a bitmap indexed by the input character to generate
an address into the transition table. A ’1’ in the i’th position
of the bitmap indicates a valid next state transition for input
character with ASCII value i; the address into the transition
table is obtained by counting the number of 1’s until bit i in
the bitmap. On the other hand, a ’0’ in the bitmap indicates

that the next state pointer is not present in the transition table,
and that we should default to the failure state (denoted by
a single failure pointer). Bitmap-based data structures obtain
considerable compression since the number of valid next states
are usually much smaller than the cardinality of the alphabet.
Figure 3(a) also shows the bitmap for State 3 from the example
in Figure 1. Note that the number of entries in the transition
table is equal to the number of valid (non-failure) outgoing
pointers from State 1, which in this case is 5. The five 1’s in
the bitmap correspond to these valid outgoing transitions from
State 3 (on characters a, f, g, h and i).

It may be observed that basic bitmap-based data structures
do not take advantage of duplicate entries in the transition
table. For example, if a state S0 transitions to state S1 on input
character ’a’ as well as input character ’b’, the transition table
contains S1 twice, in successive locations. This is because the
bitmap will have 1’s in both the ’a’ position as well as the ’b’
position. Thus, two distinct transition table addresses will be
generated for ’a’ and ’b’, necessitating separate entries. This is
also shown in the example in Figure 3(a), where the transition
table contains State 5 repeated thrice.

A straightforward way of addressing this is to use a second
bit for every location in the bitmap. The new bit indicates
if the address into the transition table must be incremented.
However, for alphabets with large cardinality requiring large
bitmaps, such a strategy results in excessive memory usage.

A better scheme is to use one level of pointer indirection.
Figure 3(b) shows this for State 3 from the example of
Figure 1. A pointer indirection table is inserted between the
bitmap and transition table. Now, the transition table contains
only distinct next state entries, in this case, 3 entries. The
bitmap generates an address into the pointer indirection table,
which in turn contains a pointer into the transition table. In
practical DFAs, the number of distinct entries in the transition
table is typically smaller than the total number of entries.
Thus, the width of the pointer indirection table need only
be the logarithm of the number of distinct next states. In the
example, each entry in the pointer table needs only 2 bits; thus,
16 such entries may be packed into a 32-bit memory word.
Although this is not the primary contribution of our paper,
we still present results on the use of pointer indirection with
bitmaps. To the best of our knowledge, such a data structure
has not been reported and studied in DFAs for network-based
intrusion detection rule-sets before.

Bitmap-based data structures have two other disadvantages,
especially when implemented in software. First, some com-
putation (1’s counting) is necessary in order to process the
bitmap and obtain an address into the transition table. Second,
fetching the bitmap could require several memory accesses.
These issues may be resolved to a certain extent by breaking
up a large bitmap into several smaller bitmaps, each annotated
with some extra information. For example, a 256-wide bitmap,
which requires 8 32-bit memory accesses, could be divided
into 8 32-bit bitmaps. Each 32-bit bitmap now needs additional
information indicating how may 1’s are present in the bitmaps
preceding it. Thus, at the expense of some memory, a large

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1066
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

0….0 1 0 0 0 0 1 1 1 1 0 0….0

1
2
5
5
5

Transition Table

Bitmap

struct DFA_state {
RegExList *accepted_regex;
unsigned int *bitmap[8];
DFA_state *transition_table[num_valid_transitions];
DFA_state *failure;

}

Indexed by ‘a’

(a)

0….0 1 0 0 0 0 1 1 1 1 0 0.…..0

1
2
5

Transition Table

Bitmap

struct DFA_state {
RegExList *accepted_regex;
unsigned int *bitmap[8];
unsigned int *ptr_indirection[num_valid_transitions];
DFA_state *transition_table[num_unique_transitions];
DFA_state *failure;

}

0
1
2
2
2

Pointer Indirection

32 bits
2 bits

num
valid
transitions
= 5

num
unique
Transitions
= 3

(b)

Fig. 3. (a) Rudimentary bitmap-based data structure. The lower part shows the bitmap and its transition table for State 3 from the example in Figure 1. (b)
More compact bitmap-based data structure using pointer indirection.

fraction of memory accesses could be reduced. We do not
detail these techniques in this paper, as they are orthogonal
to our main contributions. Similar memory access reduction
strategies could be applied to any bitmap-based technique,
including the one in this paper.

IV. STATE MERGING: A MOTIVATIONAL EXAMPLE

In this section, we introduce state merging with a motiva-
tional example. Consider states 3 and 4 in Figure 1. They they
have common destinations in states 1, 2 and 5. However, they
do not transition to state 5 on the same input character. As we
will see, this is not a requirement for state merging.

The first task when we merge two states is to label their
input transitions. This is required because merged states have
a single data structure. When this data structure is accessed
during DFA traversal, we must know how the state was
reached, and which portion of the data structure to access.
The only constraint for labeling is that all input transitions of
a state in the original DFA have the same label. Figure 1 shows
an assignment of label 0 to all input transitions of state 3, and
label 1 to all input transitions of state 4. This is sufficient
to distinguish the two states after they are merged. All other
transition labels are unnecessary at this point, and are hence
not computed.

Figure 4 shows the DFA obtained after merging states 3
and 4. The merged state is represented as 3 4. Note that the
output transitions of 3 4 are represented with trailing labels.
For example, the transition [g-i]/0, j/1 indicates that
the same next state, in this case state 5, is reached from state
3 4 upon receiving input characters g, h, i with label 0
or input character j with label 1. On the other hand, the
transitions a/0,1 and f/0,1 are taken on characters a and
f irrespective of the label with which state 3 4 was reached.

In Figure 4, we observe that states 1 and 2 now have a
common destination state 3 4. This was not the case in the
original example of Figure 1. Thus, the process of merging

0

1

63_4

2

a

f

[b-e].0

a

f

[g-h].1

k

a/0,1

f/0,1

k

a

f

a
f

5
[g-i]/0

j/1

a

f

Fig. 4. DFA after merging states 3 and 2 from the example of Figure 1.
Each transition arc is denoted by the character on which the transition occurs
followed by the transition label.

has created an opportunity for further merging. Again, labels 0
and 1 suffice to ensure that states 1 and 2 can be distinguished
after merging, i.e., these labels can be reused. If no merged
state in the DFA contains more than 2 original states, labels
0 and 1 are sufficient to label the entire DFA. We generalize
this property in Section V.

Following merging of states 1 and 2, we obtain the DFA
shown in Figure 5. We now have transitions of the type
a.0/0,1, where the label following the dot pertains to the
destination state, and the labels following the “/” pertain to
the source state of the transition. We refer to such labels
as the destination labels and source labels respectively. The
transition a.0/0,1 from state 3 4 to state 1 2 means that (i)
the transition carries with it a label 0 that tells its destination
state, 1 2 that the transition is meant for underlying original
state 1, and (ii) the transition is taken when its source state
3 4 receives labels 0 or 1. Similarly, [b-e].0/0 means that
the transition is taken when its source state 1 2 receives inputs
characters b, c, d, e and was reached with label 0, and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1067
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

0 1_2 63_4a.0, f.1 [b-e].0/0

a.0/0,1,
f.1/0,1

[g-h].1/1 k

a.0/0,1

f.1/0,1

k

a.0

f.1

5
[g-i]/0

j/1

a.0

f.1

Fig. 5. DFA after merging states 1 and 2 from the example of Figure 4.

it carries with it label 0 to indicate to its destination state 3 4
that the transition was meant for underlying original state 3.

The transition labels thus ensure no loss of information
when states are merged. However, we obtain compression by
using a modified data structure to represent the merged DFA.
The data structure for merged state 1 2 is shown in Figure 6.
The two bitmaps are the same as those in the individual data
structures for the states prior to merging. The appropriate
bitmap is chosen based on the destination label of the input
transition. The pointer indirection table indexes the transition
table (where next state pointers are stored), and also provides
the destination labels for the outgoing transitions.

Two important observations may be made. First, the data
structure does not need to store the source labels; they are
implicit. For example, the transition [b-e].0/0 is only taken
when source state 1 2 receives label 0 : this is ensured by
having separate bitmaps (and pointer indirection tables) for
each source label. Second, common destinations need only
be represented once in the transition table. For merged state
1 2, 1 2 itself and 3 4 are destinations common to several
transitions. They are represented only once in the combined
transition table to obtain compression.

Note that an alternative implementation could have outgoing
labels in the transition table, associated with the next state
pointers. However, this necessitates duplicating states in the
transition table. For example, merged state 1 2 would have
had two separate entries 3 4 with label 0, and 3 4 with label
1, requiring two entries in the wide transition table. With the
labels in the indirection table, duplication is less expensive
since the table is not as wide. For the rest of this paper, we
assume that the labels are in the pointer indirection table.

State merging also requires that we update the data struc-
tures of all states affected by the merger. For example, when
we created state 1 2, we must label transitions into the data
structure of 3 4 since there are some transitions from 3 4 to
the newly merged state 1 2.

The simple example illustrates the benefits of state merging.
In more complex DFAs corresponding to real networking rule-
sets, opportunities for merging are plentiful, as we demonstrate
in Section VI. Also, as emphasized earlier, merging states
creates opportunities for further merging by creating more
shared destinations.

0….0 1 1 1 1 1 1 0 0 0 0.…..0

Combined Transition Table

Bitmap (state 1)

0
1
1
1
1
0

Pointer Indirection + Label

0….0 1 0 0 0 0 1 1 1 0 0 0...0
Bitmap (state 2)

0
0
1
1

Pointer Indirection + Label

next state, label

0
0
0
0
0
1

0
1
1
1

1_2
3_4

Fig. 6. Merged data structure for state 1 2 of Figure 5.

V. STATE MERGING IN DFAS

Two or more states can be merged into a single state by
introducing labels on their transitions. The merged states are
represented using a data structure containing the individual
bitmaps, a combined transition table consisting of the union
of their individual transition tables, the updated pointer indi-
rection table for each original state and a structure to store the
labels. In this section, we describe state merging and labeling
in more detail, and show that the DFA obtained after state
merging is equivalent to the original DFA. We also present an
algorithm to perform merging and labeling.

We use the terms “original states” and “merged states” to
refer to the states of the DFA prior to merging and after
merging respectively. Note that after merging, some original
states may be unaffected and remain in the DFA as is.

A. Labels

For every transition connecting two merged states, we define
source labels and destination labels. A transition, represented
by c.ld/l0, l1.., thus has three attributes:

• a character c upon which the transition is taken;
• a single destination label ld that indicates to the destina-

tion state which underlying original state this transition
is meant for;

• one or more source labels l0, l1... that indicate to the
source state upon which label to take this transition.

Each time a transition c.ld/l0, l1... is taken, label ld is
produced and stored. Transition c.ld/l0, l1... will be taken if
the current input character is ’c’ and the stored label is any
of l0, l1.... If either the source or destination states are not
merged, those labels are absent from the transition. Clearly,
labels cause an overhead in terms of memory since they
need to be stored. Before presenting the merging and labeling
algorithm, we show that the number of required distinct labels
is bounded and small, and therefore their introduction only
marginally affects memory usage.

Lemma 1: An original state of the DFA has the same
destination label on all its input transitions.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1068
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

This follows from the definition above: a destination label
identifies the underlying original state. Every original state is
thus assigned a single destination label on its input transitions.

Lemma 2: The total number of distinct destination labels
required is equal to the maximum number of original states
contained in any merged state.

The lemma implies that if there are at most i original states
in any merged state in a DFA, the entire DFA needs exactly
i destination labels (which are reused across different states
throughout the DFA). The proof is straightforward. If we have
i states in a merged state, we need i destination labels on
the input transitions of the state to distinguish between the i
underlying original states. Say we have i+1 labels in the DFA,
represented by l1, l2...li+1. Consider now any merged state S
that has the destination label li+1 on its input transitions. At
least one of the i+1 labels is not used by S since S contains
at most i original states merged into it. Suppose the unused
label is lk. We contend that label li+1 can be reassigned to
lk. To see this, suppose li+1 indicates original state s (s is
now merged into S). We simply re-label all input transitions
of s from li+1 to lk. This will not affect input transitions
to any other states because every transition connects exactly
two states in a DFA, thereby maintaining the property that all
original states use exactly one label for their input transitions.

B. Legality of State Merging

We show that state merging does not affect the language
accepted by the DFA. All DFAs have an initial, “start” state,
and one or more “accept” states. It is essential to note that
state merging does not modify the start or accept states.

Lemma 3: Let D be a DFA and D′ the DFA obtained after
merging one or more state pairs of D. A pattern is accepted
by D′ if and only if the pattern is accepted by D.

Let S be the start state, and Ai an accept state of D and
D′. For a pattern to be accepted by a DFA, there is a path
from S to Ai. To prove the lemma therefore, we show that
there exists a path between S and Ai in D′ if and only if the
same path exists between S and Ai in D.

We prove sufficiency first. Let p be a path from S to Ai

in D. If none of the states on p are affected by merging,
the lemma clearly holds. Let us assume that a state s on p
has been merged with other states to create a merged state
sm. Let the transition leading into s on path p be taken on
character ci, and the transition leading out of s on path p be
taken on character co. For simplicity, we also represent the
transitions by ci and co. After merging, ci becomes ci.l and
co becomes co/l. Note that since merging neither creates nor
removes transitions, there is a one-to-one mapping between
the transitions in D and D′. When transition ci.l is taken
in D′, label l is produced and stored while traversing the
merged state. Now since the next character in the pattern is
co, transition co/l is taken as the stored label is l. Therefore
the same path p will be traversed in D′.

To prove necessity, let p′ be a path from S to Ai in D′.
If none of the states on p′ are affected by merging, the
property clearly holds. Assume a merged state sm on p′. Let

Fig. 7. Weight graphs for the DFA in (a) Figure 1 and (b) Figure 4. Bold
edges have weight 3, others have weight 2.

the input transition to sm on p′ be ci.l and the output transition
from sm on p′ be co/l. If we “unmerge” D′ and remove
the transition labels, ci.l becomes ci in the original DFA D,
and co/l becomes co (due to the one-to-one mapping between
transitions in D and D′). Thus, the same path exists in D.

C. Merging and Labeling Algorithm

We now describe our merging and labeling algorithm. The
goal of the algorithm is to merge states in such a way that
the total memory requirement is minimized. We assume that
the maximum number of labels is fixed, and associate each
state pair with a weight. The weight provides a measure
of the potential memory reduction achieved by merging the
two states. A merge operation on two states sA and sB

can cause the weight to change for other states, specifically
the states connected to sA and sB and the states that share
common targets with sA or sB . It is difficult to formulate and
analyze an optimum algorithm since the DFA changes with
each operation. Our algorithm therefore proceeds iteratively,
selecting the best choice at each iteration.

In order to keep track of the weights and efficiently access
and modify them, we make use of a graph (informally referred
to as the “weight graph”) and a heap. The graph has a node
for each state in the DFA, and an edge between every pair
of states which can potentially be merged. The weights of
the edges are stored in a heap. Figure 7 shows the weight
graphs during the first two merging steps for the example from
Figure 1. For purposes of illustration, in the figure the weights
are assumed to be the number of next states that are common
to the two states, rather than the memory savings due to the
merge operation. Figure 7(a) shows the weight graph for the
original DFA, and Figure 7(b) the weight graph after merging
states 3 and 4.

The following terminology is useful in understanding the
pseudocode of the algorithm (Figure 8). D is the DFA being
processed, assumed to be a global variable. G is the weight
graph corresponding to D. e is an edge in G, and h is a heap
storing weight graph edges ordered according to edge weights.
For two DFA states s and t, metric(s, t) is a measure of the
memory savings when s and t are merged. max labels is the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1069
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

Algorithm V.1: MERGE STATES(DFA D)

weight graph G; heap h; weight graph edge e; state s;
init(G,h)
e← deletemax(h)
while (e �= NULL and weight(e) > 0)

do

s← merge(G.left(e), G.right(e))
update(G,h, s)
e← deletemax(h)

Algorithm V.2: INIT(graph G, heap h)

state pair s,t; edge e;
for each (s,t in D with s �= t)
if (num sub-states(s) + num sub-states(t) <= max labels)

do

e← G.connect(s, t)
e.weight← metric(s, t)
h.insert(e, e.weight)

Algorithm V.3: UPDATE(graph G, heap h, state s)

state t,u;
for each (t connected to s in G)
if (num sub-states(s) + num sub-states(t) > max labels)

do
{

h.delete(G.edge(s, t))
G.delete(G.edge(s, t))

else
{
h.changekey(G.edge(s, t), metric(s, t))

for each (t with transition to s in D)
for each (u connected to t in G)

h.changekey(G.edge(t, u), metric(t, u))

Fig. 8. DFA Merging and Labeling Algorithm.

maximum number of labels allowed. For states s and t with
memory savings greater than 0, and whose sub-states do not
exceed max labels in number, there is an edge e in weight
graph G, the weight of e being equal to metric(s, t).

Algorithm V.1 shows the core of our procedure, which is
a loop that terminates when merging can no longer produce
memory savings, or if more than the maximum allowed labels
are required. Algorithm V.2 constructs the weight graph G and
stores the edges in heap h. It considers all pairs of states in
the given DFA. If the total number of sub-states in the state
pair under consideration is less than the number of labels,
it evaluates metric(s, t) and assigns it to the weight of the
edge connecting states s and t in the weight graph. Recall
that metric(s, t) is an exact measure of the memory savings
possible when states s and t are merged.

When two states are merged, data structures of other states
in the DFA, as well as weights of edges in the weight graph,
must be updated. Algorithm V.3 shows a procedure for doing
this. The first part updates the weights of all edges connected
to the newly merged state. It also removes those edges from
the heap and weight graph if the total number of sub-states of

their state pair exceeds the number of labels. The final part of
Algorithm V.3 recalculates the metric corresponding to state
pairs where one state is connected to the merged state. This is
required because states connected to a merged state will have
fewer destinations, changing their metric.

D. Analysis

We now present a complexity analysis of the above algo-
rithms. The original DFA is assumed to have n states.

First, we analyze the complexity of each iteration of Algo-
rithm V.1. There is one call to the weight graph initialization
function of Algorithm V.2. For each iteration, there is one call
to the update function of Algorithm V.3. All heap operations
take logarithmic time in the number of heap elements. Data
structure initialization visits every state pair in the DFA, a
maximum of n2 state pairs. Inserting these elements into the
heap therefore leads to O(n2logn) complexity. Next, a single
update operation in Algorithm V.3 has the same O(n2logn)
complexity if the states required to be updated are connected
to all the states in the graph. In practice however, very few
states need to be updated each time. Also, due to merging, the
number of states in the graphs decreases with each iteration.

The maximum possible iterations occurs when we merge
only two states per iteration, and continue until all merged
states contain max labels original states. In other words, we
start with n original states, and end up with n/max labels
states, meaning we can have up to (n − n/max labels)
iterations in Algorithm V.1. Since each iteration has com-
plexity O(n2logn), this leads to an overall complexity of
O(1− 1/max labels)n3logn).

E. Rule Database Updates

Updates to rule databases occur infrequently enough to not
warrant processing them at LPM-like rates of several thousand
per second. One strategy to handle updates is to create two new
DFAs, one to hold the new regular expressions to be added,
and the other to hold regular expressions to be removed. All
three DFAs are looked up in parallel. Another strategy is to use
a shadow copy of the merged DFA data structures. The shadow
copies are updated offline, after which they switch positions
with the online DFAs. Since state merging and labeling is
compatible with any of these existing techniques, we do not
describe them further in this paper.

VI. EXPERIMENTAL RESULTS

Now we present experimental results on Bro [2] and
Snort [1] security rule-sets. We evaluate the benefits of our
scheme over the naive implementation, bitmaps and bitmaps
with pointer indirection (both described in Section III). The
results show the reduction in the number of states and distinct
transitions, as well as the final memory savings.

A. Experimental Setup and Memory Representation

Our simulation infrastructure consists of a DFA generator
and a DFA merging module. The latter is parameterized in
the maximum number of sub-states a merged state can consist

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1070
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

Data-set Characteristics Before Merging After Merging
IDS source file RegEx Single wildcards .* .{x,y} States Transitions Distinct Trans. States Distinct Trans.

Bro v0.8 ex-web 233 3 - 1 3,287 841,472 181,783 450 11,181
Bro v0.9 sig-addendum 32 15 - 1 3,187 815,872 79,561 2,251 41,754

SNORT 07/2006 policy 5 - 2 - 154 39,424 818 19 64
SNORT 07/2006 p2p 6 - 6 - 210 53,760 1,003 27 89
SNORT 07/2006 web-php 15 1 1 - 1,086 278,016 14,464 435 4,169
SNORT 07/2006 spyware/http 7 1 10 - 4,984 1,275,904 39,016 534 2,053
SNORT 07/2006 spyware/port25 20 1 21 - 7,000 1,792,000 64,844 322 1,686
SNORT 07/2006 backdoor 13 - 7 - 7,183 1,838,848 55,444 388 1,696

TABLE I

SUMMARY OF CHARACTERISTICS OF THE DATASETS USED AND OF THE CORRESPONDING DFAS.

of (i.e., the maximum number of labels allowed) and in the
metric guiding the merging choices. Since the basic goal of
merging is memory reduction, the metric selected gives a
direct measure of the effective memory reduction due to each
merger. We assume 256-bit wide bitmaps (note that existing
bitmap compression techniques could be used on top of this,
but we do not employ them in this paper). The width of
the transition table is set to 32 bits, amenable to a software
implementation. Labels add log2(max labels) to the width
of the pointer indirection table. Apart from this, the width of
the indirection table is a function of the number of distinct
outgoing transitions of the corresponding state. This results in
a few different widths for the pointer indirection table entries;
blocks with different widths are assumed to be laid out in
different memory regions aligned to 32-bit boundaries.

B. Rule Databases

As mentioned, the datasets used consist of subsets of
rules from Bro [2] and Snort [1] NIDS. We considered two
distinct Bro rule-sets, one from v0.8 and one from v0.9.
In the case of Snort, we considered a snapshot from July
2006 and processed subsets of rules containing Perl com-
patible regular expressions (PCREs). The first six columns
of Table I detail the sources of the regular expressions
and their general characteristics. All datasets contain wild-
cards and a few present counting constraints. We pre-filtered
large datasets based on headers. Specifically, backdoor, spy-
ware/http and spyware/port25 datasets contain rules filtered
respectively according to the headers $HOME NET any -
$EXTERNAL NET $HTTP PORTS/any, $HOME NET any
- $EXTERNAL NET $HTTP PORTS/any, and $HOME NET
any - $EXTERNAL NET 25/any.

Columns seven to nine in Table I summarize the character-
istics of the resulting DFAs. The DFA sizes vary from 154
to 7183 states. We also characterize the DFAs in terms of
number of distinct transition to next states they contain. Two
transitions from the same state are considered to be distinct
if they lead to two different target states (regardless of the
symbol upon which the transitions are taken). The number of
distinct next state transitions shown in the table is summed
over all the states in the DFA. Note that the Snort rule-sets
have lower percentages of distinct next state transitions than
the BRO rule-sets. This is due to the large number of character
ranges (both in the form [c1-c2] and \d, \D, \w,\W,\s,\S) and

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

bro
 v0

.8

bro
 v0

.9
p2p

polic
y

web
-p

hp

bac
kd

oor

sp
yw

ar
e/2

5

sp
yw

ar
e/h

ttp

Rule-set
N

o
rm

al
iz

ed
 M

em
o

ry

bitmap
pointer indirection
merging - 2 labels
merging - 8 labels
merging - 32 labels
merging - 128 labels

Fig. 9. Memory reduction with state merging, normalized to a naive
implementation.

to the fact that Snort regular expressions are not case sensitive.
Table I shows the total number of states and distinct tran-

sitions after merging with 128 labels. The distinct transitions
refer to the number of entries in the transition tables, which
are used to computing the total memory requirement. The
naive data structure represents all transitions in the DFA,
whereas our data structure only represents distinct transitions.
State merging reduces the number of states by an order of
magnitude, and the number of transitions by two orders of
magnitude.

C. Memory requirement

Regardless of the reduction in the number of states and
transitions, the bottom-line is memory reduction. Note that a
10x or a 100x reduction in the numbers of states and transitions
will translate to a smaller reduction in memory usage because
of overheads in the data structure, and the fact that some parts
of merged states cannot be compacted. Figure 9 compares the
memory requirement of the bitmap solution, of bitmaps with
pointer indirection and of state merging with 2, 8, 32 and 128
labels (above which no further memory reduction is observed).
We set the failure pointer of each state to its most frequently
occurring target state. The data are normalized to the memory
requirement of the naive data structure shown in Figure 2.

We observe that pointer indirection is better than the bitmap
solution only if the additional data structure overhead is com-
pensated by a reduction in the number of next state pointers.
Because of the higher percentage of distinct transitions, pointer
indirection alone is not beneficial for Bro databases. It can be
noted that, despite the label overhead, state merging always

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1071
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

reduces the memory requirement. Not only does it allow us
to take advantage of common transitions within a state, but
also across different states. The final memory requirement
decreased by a factor of 10 for Bro and by a factor of 15-
25 for Snort (over the naive implementation).

Compared to bitmaps, state merging on average halves
the total memory requirement. Note that bitmaps present a
constant overhead for the plain bitmap solution, the pointer
indirection solution as well as the state merging technique. It
is well known that bitmaps can be further compressed using
several techniques [17]. Thus, if we ignore the overhead of the
256-bit wide bitmap in order to isolate the memory savings
of state merging, we see that state merging produces a 5X
memory reduction over bitmaps.

In real applications, complexity of a rule-set is indicative of
the number of wildcards in its regular expressions, a charac-
teristic that generally results in more common transitions both
for a state and across different states. This is a favorable trend
to techniques like state merging.

Finally, we note that state merging does not affect perfor-
mance. Specifically, the number of memory accesses remains
the same. To see this, consider the pointer indirection table
that has the additional overhead of labels. Given that both the
pointer indirection table entry as well as the number of bits
required for the label are well below 32, the introduction of
labels won’t necessitate more memory accesses in a software
implementation for typical DFAs. In a specialized hardware
implementation, memory words may be carefully adjusted to
ensure performance is unaffected.

A quantitative comparison between our scheme and D2FA
[6] is difficult since the authors do not compute the actual
memory savings, but report the reduced number of transitions.
A possible implementation of D2FA could use bitmaps to
filter out the default transitions, incurring the same bitmap
overhead we experience. A D2FA implementation recently
proposed in [18] uses ad-hoc state identifiers and assumes
very wide memory accesses. This is therefore suited to a
hardware implementation. We refer the reader to the qualitative
comparison presented in Section II. Note that treating the
default pointers as failure pointers, state merging can in fact
be performed on top of a D2FA.

VII. CONCLUSIONS

Regular expressions are increasingly used in networking
security and policy management. A popular technique for
performing regular expression search is the DFA. While DFAs
offer O(1) lookup time per input character, their memory
requirements make them impractical for realistic rule-sets.
Both software and hardware implementations of regular ex-
pression search engines that use DFAs are hampered by their
prohibitive memory usage. Compounding this problem is the
need to perform online payload inspection at high line speeds.
Due to reasons pertaining to denial-of-service attacks, routers
implementing these services must also provide a worst-case
speed guarantee.

In this paper, we described a scheme to drastically reduce
memory usage of DFAs while not affecting their speed, and
still providing worst-case guarantees. We introduced the notion
of merging non-equivalent states of a DFA using transition
labeling. Significant memory savings are achieved when states
with common destinations are merged and represented using
our data structure. Unlike other DFA compaction approaches,
we have no requirement on the transitions on which the two
states reach their common destinations. Another advantage of
our scheme is that merging states creates more common des-
tinations for other states, thereby providing opportunities for
more merging. We describe a polynomial-time state merging
and labeling algorithm, and show that state merging does not
affect the language accepted by the DFA.

We perform several experiments on real rule-sets from the
Snort and Bro IDS, and show memory compactions ranging
from 10X to 25X compared to the basic DFA data structure,
and 5X compared to a bitmap-based data structure.

The results presented in this paper exemplify a software im-
plementation. Future work encompasses tailoring the proposed
scheme to a specialized hardware architecture.

REFERENCES

[1] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,” in
13th System Administration Conference, pp. 229–238, Nov 1999.

[2] “A System for Detecting Network Intruders in Real Time (http://
www.icir.org/vern/bro-info.html).”.

[3] R. Sommer and V. Paxson, “Enhancing Byte-Level Network Intrusion
Detection Signatures with Context,” in ACM Conference on Computer
and Communication Security, pp. 262–271, 2003.

[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Automata Theory,
Languages and Compilation. Addison Wesley, 3rd ed., 2004.

[5] V. Paxson, “Fast Lexical Analyzer Generator (http://ftp.ee.
lbl.gov/flex-2.5.4.tar.gz),”

[6] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algo-
rithms to Accelerate Multiple Regular Expressions Matching for Deep
Packet Inspection,” in ACM Sigcomm, Sept 2006.

[7] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
Memory-Efficient String Matching Algorithms for Intrusion Detection,”
in IEEE Infocom, pp. 333–340, Mar 2004.

[8] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,”
Communications of the ACM, pp. 762–772, 1977.

[9] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Tech. Rep. TR-94-17, 1994.

[10] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Communications of the ACM, pp. 333–340, 1975.

[11] L. Tan and T. Sherwood, “A High Throughput String Matching Archi-
tecture for Intrusion Detection and Prevention,” in ISCA, 2005.

[12] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit Rate Packet Pattern-
Matching Using TCAM,” in ICNP, pp. 174–183, 2004.

[13] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast
and Memory-Efficient Regular Expression Matching for Deep Packet
Inspection.”

[14] B. C. Brodie, R. K. Cytron, and D. E. Taylor, “A Scalable Architecture
for High-Throughput Regular-Expression Pattern Matching,” in ISCA,
pp. 191–202, 2006.

[15] T. V. Lakshman and D. Stidialis, “High Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,” in
ACM Sigcomm, Sept 1998.

[16] F. Baboescu and G. Varghese, “Scalable Packet Classification,”
IEEE/ACM Transactions on Networking, pp. 2–14, Feb 2005.

[17] G. Varghese, Network Algorthmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann, 1st ed., 2004.

[18] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in IEEE/ACM ANCS, Dec 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1072
Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 20:59 from IEEE Xplore. Restrictions apply.

